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Impinging free jets of ideal fluid
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This paper studies the impinging of two ideal fluid jets. The usual two-dimensional
model of jet flow uses an ideal, incompressible, weightless fluid to describe these
impinging jets, so that the problem becomes one of complex analysis which seems to
have an infinite number of analytical solutions, except for direct jet impacts. The new
approach presented here is based on the construction of a dividing line between the
two jets. It gives an efficient procedure for solving this problem numerically when the
jets flow in arbitrary directions and the solution obtained seems to be unique.

1. Introduction
As far back as 1868, Helmholtz and Kirchhoff set up the classical two-dimensional

theory of jets. They considered steady irrotational flows of ideal incompressible
weightless fluid, bounded by walls and free streamlines. High-speed liquid jets in
a stationary gas can be modelled on these assumptions. By the beginning of this
century, a great many different kinds of flows could be represented on the basis of
complex analysis. The monographs of Birkhoff & Zarantonello (1957), Jacob (1959),
Gurevich (1966) and Milne-Thomson (1968) give good surveys of these flows.

The different problems addressed in the theory of jets can be grouped into two
main categories. The first comprises problems of plane flows issuing from vessels. The
purpose is to define the shape of the free streamlines and the contraction coefficient
of the jet for a given nozzle geometry. The main difficulty here stems from the shape
of the walls. Solutions were first found by specifying a boundary consisting of a
few plate walls. Dias, Elcrat & Trefethen (1987) present an efficient procedure for
solving this jet problem numerically, for an arbitrary polygonal nozzle. Later, Dias &
Vanden-Broeck (1990) considered a jet flow with gravity.

The second category of problems concerns jets flowing past a wall, the impact of
a jet on an obstacle or infinite wall, free jets, and impinging free jets. Except for
very simple barrier geometries, these flow problems cannot be solved analytically, as
was shown in the monographs mentioned above. King & Bloor (1990) presented a
method for determining the free streamline of a jet of ideal fluid flowing past a wall
of arbitrary shape. They used the generalized Schwarz–Christoffel transformation
combined with a Fourier transform technique to formulate a system of nonlinear
integro-differential equations for the tangential angle made by the free surface and
the wall. Proceeding similarly Peng & Parker (1997) determined the free surface of
a jet impinging on an uneven wall by combining the Hilbert transform with the
generalized Schwarz–Christoffel transformation technique. They noted that, when the
flow pattern is asymmetrical, the unknown position of the stagnation point makes
the free-surface shapes very difficult to compute. Hureau, Brunon & Legallais (1996)
proposed a new approach, based on previous studies of Helmholtz flows (see Hureau,
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Figure 1. General configuration of two impinging free jets.

Mudry & Nieto 1987), using a numerical procedure for the case of a jet impacting
and divided by a curved obstacle. The method is efficient and easy enough for us to
consider the classical problem of the flow of two impinging free jets.

Consider two impinging jets J1 and J3, of the same speed at infinity, and two
outgoing jets J2 and J4 (figure 1). The pressure and velocity norms on all the free
streamlines are identical. We denote the thickness of the jets at infinity by h1, h2,
h3, and h4, and the angle between jet directions and the x-axis by θ1, θ2, θ3, and
θ4, respectively. The problem is determined by the thicknesses h1 and h3, and the
angles θ1 and θ3. This problem has been considered by a number of authors, such
as Birkhoff & Zarantonello (1957), Gurevich (1966), and Milne-Thomson (1968). It
is well known that, if the jets J1 and J3 are not parallel to one another and have
different thicknesses, the problem appears to be indeterminate because we have only
three equations for calculating h2, h4, θ2, and θ4. These equations are obtained by
applying conservation of mass and the theorem of change of momentum. Various
explanations, usually having to do with the stability of the phenomenon, have been
proposed for this indeterminateness. Since the purpose of the present study is to model
the impact of two physical jets, we have to investigate this question of an infinite
number of solutions, because experimental data do not seem to reflect that different
flow patterns are possible with just one critical point for two given impinging jets. So
what if we determined of this flow pattern by the theorem of change of momentum?
We take the example of the impact of a jet on a large plane barrier, and symmetric
flow. This configuration is used to solve the impact of two equal jets with incidence
(see Milne-Thomson). The theorem is applied to the domain bounded by portions
of free streamlines and by cross-cuts joining adjacent free streamlines (figure 2). In
order for the velocity to be considered uniform on these cross-cut lines, they must
be at a large distance from the impinging area. Figure 3(a) shows the flow of two
parallel jets of the same width impinging a large barrier, and 3(b) shows a similar
flow when the barrier is not planar. These flow patterns verify the three equations
of conservation of mass and change of momentum, but the theorem cannot account
for the existence of these barriers inside the domain. We would have the same results
even if the impinging jets were shifted, or if a stagnation zone existed (see Gurevich,
figure 171 p. 247). So, it appears that the theorem of change of momentum and
conservation of mass are not sufficient for solving the impact of two given jets with
one critical point, and therefore there is no proof that an infinite number of solutions
to this flow pattern exist if a fourth condition is specified.
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Figure 2. Symmetrical jets impinging on a large plate.
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Figure 3. Other solutions verifying the theorem of change of momentum.

Gurevich, and then Milne-Thomson, give the equation of the free streamlines in
terms of the complex velocity and then of the four unknowns. By applying this
equation to a point at infinity of the upper free streamline of jet J1, Keller (1990)
obtains a new relation giving the distance yL of the asymptote from the stagnation
point. He maintains that if yL is specified, he has the fourth equation of the problem.
He illustrates the use of his equations with the special case of the impact of two
equal and oppositely directed jets (h1 = h3, θ1 = 0, and θ3 = π), and finds the same
results as Birkhoff & Zarantonello and Gurevich. However, no more general case is
dealt with, such as the oblique impact of two jets of different thicknesses. Nor is the
existence of the solution studied. That is, if the solution is assumed to be unique for
two given impinging jets, how can we specify the value of yL? Keller’s equation does
not seem to be the fourth equation, but rather a relation which is obviously verified
when the solution is reached. So it seems that there is as yet no solution to oblique
impinging jets of different widths. The difficulty in these problems is to determine the
position of the stagnation point in the physical plane, as specified by Peng & Parker
(1997) for the impact of a jet onto a wall.

Assuming that a solution does exist, we present an efficient numerical method for
computing θ2, θ4, h2, h4, and the free streamlines by a new approach.

2. Formulation of the problem
After these remarks on the use of the theorem of change of momentum, we have

to impose a condition to be sure that the flow pattern is really the one we want. This
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Figure 4. Jet impinging on an infinite wall.

condition is that a unique streamline ` in equilibrium separates the two impinging
jets J1 and J3 ; and this is certainly not the case for the infinite solutions given by
the theorem of change of momentum and the conservation of mass. To avoid having
to verify this condition for each solution, we impose it by constructing `. We likened
` to a wall impinged by J1, and calculated the velocity distribution along `. Then
we determined the shape that ` would have if the velocities due to the action of J3

on this wall were the same as those resulting from the impact of J1 on `. We then
modify the geometry of `, and the procedure is repeated until the shape of ` remains
unchanged for two iterations.

This led us to review two important previous studies. First, in considering the
impact of a jet on an infinite curved wall to obtain the velocity distribution along `,
i.e. the direct problem, our method is different from the one developed by King &
Bloor (1990) and Peng & Parker (1997). It enables us to consider an inclined jet and
a wall with a curvature resembling the one expected for `. Secondly, we formulate
a method for designing a wall that corresponds to a prescribed speed distribution,
i.e. the inverse problem, which we solve by generalizing an airfoil design method
presented by Hureau & Legallais (1996). The formulation used here to construct `
works only with the results obtained by solving the impact of a jet on a barrier,
and so is not a general solution to the inverse problem. We have to relate these two
problems in order to draw the streamline ` from the datum of an initial arbitrary
shape.

The theorem of change of momentum is not used for solving the problem, but only
for checking our results.

3. Jet impinging on an infinite wall
Take a jet J of width hA and velocity V∞, bounded by the free streamlines `AB and

`AD, impinging a curved infinite barrier and divided into two branches J1 and J2, as
in figure 4. Let C denote the dividing point, A the infinite upstream point, and B
and D the infinite downstream points where the widths are hB and hD . We choose to
define the cartesian x-axis as the centreline of the impinging jet. The origin O of this
coordinate system is located at the intersection of the x-axis and the barrier. This is
a special case of the impact of a jet on an obstacle (figure 5), presented previously by
Hureau et al. (1996), because the wetted wall becomes infinite (B → B′ and D → D′).
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Figure 5. Jet impinging on an obstacle.

The physical plane is described by expressing the complex position z =
∫

df/w,
where f is the complex potential and w the complex velocity. The boundary conditions
are

lim
z→A

w(z) = V∞, (3.1)

Im {w(z)dz} = 0 on the wetted wall BCD, (3.2)

|w(z)| = V∞ on `AB and `AD. (3.3)

3.1. Mathematical formulation

The aim of the problem is to define the flow region in the physical plane by calculating
the free streamlines `AB and `AD. This is usually done by conformal mapping of the
flow pattern in the f- and w-planes on an auxiliary plane ζ. The flow domain in the
f-plane is a strip of width hAV∞ (figure 6), but when the wall is curved, the region
of variation in the w-plane is unknown. The problem is solved rather by determining
the function Ω defined by

Ω = −i log
V∞

w
= Θ + iT ,

where Θ is the direction of the velocity and T is given by |V | = V∞eT . T is null on
`AB and `AD (3.3), and Θ is assumed to be determined by the shape of the barrier
(3.2) on which β is the angle between the tangent at a given point and the x-axis, and
s is the arc length starting from O, s ∈] −∞,+∞[. Calculating Ω consists in solving
a mixed boundary problem. Using the Levi-Civita method (1907), the flow domain in
the z-plane is mapped onto a half-unit disk, in such a way that the free streamlines
map onto the diameter. As Ω(ζ) tends continuously toward real values on it (T = 0)
and, according to Schwarz’s reflection principle, the Ω-function may be continued
analytically across BAD to the lower half-unit disk. The mixed boundary problem
then becomes a Dirichlet problem, because θ(σ) = Θ(eiσ), or τ(σ) = T (eiσ), is known
everywhere on the circle when we study the direct, or inverse, problem, respectively.
Ω is calculated inside the whole disk by the Schwarz–Villat formula. Figure 6 shows
the different planes we used to map the flow pattern.

The Schwarz–Christoffel formula is used to map Z onto the f-plane

f(Z) =
K

2
[(1 + cos γ) log(Z − 1) + (1− cos γ) log(Z + 1)] + const.,

where the value of K has to be determined and ζ = eiγ corresponds to the point C .
By analysing f(Z) in the vicinity of points B and D in the f and the Z-planes, we
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find the two relations

ihBV∞ = −iπ
K

2
(1− cos γ),

ihDV∞ = −iπ
K

2
(1 + cos γ),

and thereby

hB

hD
=

1− cos γ

1 + cos γ
.

Thus, using the relation Z = − 1
2
(ζ + 1/ζ) to map ζ onto the Z-plane, we have

f(ζ) = −hBV∞
π

log

[
1− 1

2

(
ζ +

1

ζ

)]
− hDV∞

π
log

[
−1− 1

2

(
ζ +

1

ζ

)]
+ const.

Finally

df =
V∞

π

(
hB

2− ζ − 1/ζ
− hD

2 + ζ + 1/ζ

)(
1− 1

ζ2

)
dζ. (3.4)

Let ε be the one-to-one correspondence function between the wetted wall BCD in
the ζ-plane and the z-plane

θ(σ) = (β ◦ ε)(σ)−
{
π for σ ∈ [0, γ[
0 for σ ∈]γ, π].

(3.5)

At the stagnation point C , θ has two values, and the null velocity implies that
τ → −∞ here, so the Ω-function has a singularity at this point. The usual way of
isolating this singularity is to separate Ω into one regular function Ω̃ and another
function ΩS having the same discontinuity. Moreover, if Ω(ζ) becomes infinite as
ζ → eiγ , the same must happen as ζ → e−iγ , in accordance with the Schwarz reflection
principle. Gurevich (1966) proposed a function which satisfies these conditions:

ΩS (σ) = θS (σ) + iτS (σ) = −3π

2
+ γ + i log

(
eiσ − eiγ

eiσ − e−iγ

)
,

where

θS =

{
− 1

2
π for σ ∈ [0, γ[

+1
2
π for σ ∈]γ, π]

and τS = ln

∣∣∣∣∣sin 1
2
(σ − γ)

sin 1
2
(σ + γ)

∣∣∣∣∣ .
The regular function Ω̃ = θ̃ + iτ̃ must now be found. Here, the treatment of the
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two problems (direct and inverse) differs. For the direct problem, the geometry of the
barrier is specified and, with (3.5), θ̃ is known:

θ̃(σ) = θ(σ)− θS (σ) = (β ◦ ε)(σ)− 1
2
π. (3.6)

On the other hand, in the inverse problem, the prescribed speed distribution yields τ̃:

τ̃(σ) = τ(σ)− ln

∣∣∣∣∣sin 1
2
(σ − γ)

sin 1
2
(σ + γ)

∣∣∣∣∣ . (3.7)

3.1.1. Direct problem

In this case, Ω̃ may be obtained from the Schwarz–Villat formula:

τ̃(σ) =
1

π
lim
ζ→eiσ

Im

{∫ π

0

1− ζ
1− 2ζ cos σ′ + ζ2

θ̃(σ′)dσ′
}

+ T̃ (ζ = 0), (3.8)

for T̃ (ζ = 0) = 0.
From equation (3.1), Ω(0) = 0, and the Schwarz–Villat equation written for Ω at

point ζ = 0 yields Ω(0) =
∫ π

0
θ(σ′)dσ′. Hence∫ π

0

θ̃(σ′)dσ′ −
∫ γ

0

1
2
πdσ′ +

∫ π

γ

1
2
πdσ′ = 0,

and finally

γ = 1
2
π +

1

π

∫ π

0

θ̃(σ′)dσ′. (3.9)

Then the different terms of the relation

dz =
df

w
=

df

V∞
ei[ΩS (σ)+Ω̃(σ)] (3.10)

seem to be determined. However equation (3.6) depends on the ε-function, which is
defined only by the norm of dz (3.10) on the wall, and applying equation (3.4) with
ζ = eiσ , we finally obtain

ε(σ) =

∫ σ

γ

ds =
2hA
π

∫ σ

γ

1

eτ̃(σ′)
sin2 1

2
(σ′ + γ)

| sin σ′| dσ′. (3.11)

In this expression, the stagnation point C has been chosen as reference point
because its position in the ζ-plane is determined; but its position in the physical
plane, where O is the origin, is unknown. The stagnation streamline `AC for the
impinging jet J , computed with respect to the jet axis, gives us the relation

Im

{
zC +

∫
`AC

dz

}
=
hA

2
− hD, (3.12)

and then the position of C in the z-plane, i.e. its arc length λC on the wall.

3.1.2. Inverse problem

In order to solve the inverse problem, the imaginary part of Ω̃ is known from the
specified speed distribution eτ(s) (3.7). Another Schwarz–Villat formula should be used
to determine the real part θ̃:

θ̃(σ) = Θ̃(ζ) = 1
2
π lim
ζ→eiσ

Re

{∫ π

0

ζ sin σ′

1− 2ζ cos σ′ + ζ2
τ̃(σ′)dσ′

}
+ Θ̃(0),
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where Θ̃(0) = Θ(0)−ΘS (0) = 0− (γ− 3
2
π) + (γ− π) + (γ− π) with Θ(0) = 0 because

the direction of the x-axis has been chosen to coincide with that of the jet. Therefore,

Θ̃(0) = γ − 1
2
π.

This yields

θ̃(σ) =
2

π
lim
ζ→eiσ

Re

{∫ π

0

ζ sin σ′

1− 2ζ cos σ′ + ζ2
τ̃(σ′)dσ′

}
+ γ − 1

2
π. (3.13)

As the velocity is zero at the dividing point, it is easy to locate in the prescribed
speed distribution (which gives λC). We should point out that γ must be obtained
immediately from the definition of the function ε. But as the arc lengths from the
origin become infinite at B and D, the location of γ is not prescribed as it is in airfoil
design, where the arc length is finite. The general analysis for asymmetrical barriers is
not performed here (this is under consideration) but our present analysis is sufficient
for our treatment of impinging jets. So it will be reduced to a symmetrical velocity
distribution (γ = 1

2
π) or to cases where γ could be specified in some another way.

The equation (3.11) that determines the function ε is still valid because the expres-
sion for df (3.4) is the same. Since the value of λC is already known, the additional
equation (3.12) is of no use in solving the problem. But with no loss of generality, the
initial speed distribution can be given with the origin located at the stagnation point
rather than at the point O defined above. The treatment will be exactly the same, but
in the end, we will have to draw the stagnation streamline to define the location of
the impinging jet. The aim is to draw the wall. This is done by using dz = dseiθ(σ):

z(σ) = zC +
2hA
π

∫ σ

γ

1

eτ̃(σ′)−iθ(σ′)

sin2 1
2
(σ′ + γ)

| sin σ′| dσ′ (3.14)

where zC is found by stating that if eiσO is the location of point O in the ζ-plane,
z(σO) = 0.

3.2. Numerical procedure

The unknowns in the direct problem are the functions ε, σ → θ̃, τ̃, the angle γ, and the
location λC of the point C on the wall. Relations (3.11), (3.6), (3.8), (3.9) and (3.12)
supply a functional system of five equations written as

ε = f1(τ̃, γ, λC), θ̃ = f2(ε), τ̃ = f3(θ̃, ε), γ = f4(θ̃, ε), λC = f5(τ̃, γ, ε).

This system is solved by building a series (εn, θ̃n, τ̃n, γn, λCn) from any initial corre-
spondence function ε1, using the following recursive algorithm:

εn = (1− r1)f1(τ̃n−1, γn−1, λCn−1) + r1εn−1,

θ̃n = (1− r2)f2(εn) + r2θ̃n−1,

τ̃n = (1− r3)f3(θ̃n, εn) + r3τ̃n−1,

γn = (1− r4)f4(θ̃n, εn) + r4γn−1,
λCn = (1− r5)f5(τ̃n, γn, εn) + r5λCn−1.

The weighting factor r1 varies from 0.5 to 0.9 for barriers with large curvature, and
we choose to leave the others null. The convergence of the problem is verified by a
test on the relative error associated with ε.

For the inverse problem, the unknowns are the functions σ → τ̃, θ̃, ε, and the angle
β (or θ). In accordance with the preceding remark about the determination of γ, we
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assume that the value of γ is specified. The functional system is then reduced to the
equations (3.7) and (3.11):

τ̃ = f1(ε),
ε = f2(τ̃),

and, from an initial function ε0, we solve by using the following recursive scheme:

τ̃n = (1− r1)f1(εn−1) + r1τ̃n−1,
εn = (1− r2)f2(τ̃n) + r2εn−1.

Usually, the weighting factor r2 belongs to [0.5,0.9] while r1 is set at zero. We stop
the process when it converges, as determined by a test on the relative error associated
with ε.

As expressed previously (3.14), the design of the barrier is defined by relations (3.6)
and (3.13).

To solve the flow pattern in these two cases (direct and inverse problem), we still
have to draw the free streamlines `AB and `AD. To do this, the reference points I1

and I2, defined in the f-plane are used. Their affixes in the ζ-plane are ζI1 and ζI2 ,

respectively. Their position in the physical plane is obtained by integrating
∫ ζI1,2
ζ=eiγ dz,

where dz is given by (3.10). Then
∫ ζ→1

ζI1
dz and

∫ ζ→0

ζI1
dz are used to draw `AB , and∫ ζ→−1

ζI2
dz and

∫ ζ→0

ζI2
dz to draw `AD.

3.3. Computed results

We will now test the ability of our method by comparing our computed results with
analytical or published data.

3.3.1. Direct problem

Convergence is reached after 15 to 20 iterations, requiring a few minutes of
calculation on a PC Pentium 120 MHz computer.

Analytical results: The classical analytical solutions are as follows
(i) Impact of a jet on an inclined plate wall. To solve this problem, Milne-Thomson

(1968) considers the oblique impact of two equal jets. The bisector of the angles of the
two impinging jets is indeed the dividing streamline of the flow, and can be regarded
as a rigid barrier. This case of impinging jets is solved analytically.

(ii) Impact of a jet on an infinite wedge. This problem can be reduced to the upper
half of the flow, for reasons of flow symmetry. Here, the region of variation in the
w-plane is known, but it is usually better to consider the Q-plane, with Q being the
Kirchhoff function Q = log(V∞/w). It is then possible to map the Q-plane and f-plane
conformally onto the upper half-plane ζ using the Schwarz–Christoffel formula. The
free streamline is then calculated by integrating the relation dz = dfeQ(ζ)/V∞ .

In these two cases, the analytical and the computed results are identical.
Published results.
Peng & Parker (1997) recently presented a numerical procedure for solving an

ideal jet impinging on an uneven wall, using a Hilbert transform and the generalized
Schwarz–Christoffel transformation technique to obtain a system of nonlinear integro-
differential equations. They present results for the impact of a jet of width 2 at
normal incidence upon various walls. For example x(y) = e−y

2

(figure 7a, with the
dotted lines representing the jet stagnation line), 7(b) x(y) = −0.25e−(y−0.2)2

, and 7(c)
x(y) = −1.2 sech (y − 0.85). As we used plots, their results do not compare exactly
with ours but the drawing for a symmetrical wall is similar. When the barrier starts
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Figure 7. Impact of a jet of width 2 at normal incidence on symmetric and asymmetric walls:

(a) x(y) = e−y
2
, (b) x(y) = −0.25e−(y−0.2)2 , and (c) x(y) = −1.2 sech (y − 0.85).
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Figure 8. (a) Impact of a jet of width 0.5 and 1.5 at normal incidence on an arc of parabola
extended by two plates. (b) The wall is rotated by an angle of 35◦.

to become asymmetrical, the plots differ more and more. Conservation of mass does
not seem to be verified in their plots, as the width of the incoming jet is greater than
that of the sum of the two outgoing jets. So the asymmetric solutions would have to
be revised, or at least other data would have to be used.

To test our method, we now consider other wall shapes close to the geometry of
the streamlines we expect to find with impinging jets: an arc of parabola extended
to infinity by two plates, with the origin O at the vertex of the parabola. Figure 8(a)
shows the computations for symmetrical impact and for two given widths hA (0.5
and 1.5). The wall is then rotated 35◦ (figure 8b). The pressure coefficient distribution
Cp = 1− e2τ along these two barriers for hA = 1.5 is presented in figure 9.

To show the possibilities of our method, we now consider a more complex wall
shape consisting of two sinusoidal periods with wavelengths of 2, extended to infinity
by two plates. The wall is inclined at an angle of 45◦ with respect to the direction of
the centreline of the impinging jet. The jet width is 0.5 and the free streamlines that
we calculated are plotted in figure 10.
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Figure 9. Pressure coefficient distribution along the two barriers for hA = 1.5.
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Figure 10. Impact of a jet of width 0.5 on a wall. The shape is given by two sinusoidal periods
with wavelengths of 2 extended by two plates and is inclined at an angle of 45◦.

3.3.2. Inverse problem

To our knowledge, there are no data for this problem in the literature so we will
test our method by drawing the walls of the analytical and computed solutions that
we studied above.

For symmetrical distributions, any symmetrical seed function ε0 can be chosen. Us-
ing the analytical velocity distribution (or τ(s)) of symmetrical barriers (jet impinging
normally on a wall, or infinite wedge) in our other program, we can draw a wall
that coincides exactly with the initial one. The velocity distribution from the sym-
metrical parabola (see figure 9) is then used to test the method. Here again, with any
symmetrical function ε0, the designed wall is identical to the initial one (figure 11a).
Convergence is reached after 20 iterations, requiring about one minute of calculation
on a PC Pentium 120 MHz computer.

For asymmetrical barriers, the value of γ is not defined. So we can only verify
that, when the solution of the direct problem is used as the function ε0, the wall
corresponds. The process converges immediately, of course, and gives the right result.
In the cases of a jet impinging on an inclined wall or an inclined parabola, the
drawing is exactly identical to the initial barrier (figure 11b)).
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Designed wall
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Figure 11. Inverse problem results.
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Figure 12. The inverse problem configuration for impinging free jets problem.

4. Impinging jets

The data of the problem are the widths h1 and h3 and the angles θ1 and θ3 (figure
1). The jets have the same speed V∞ at infinity. The case of two impinging jets,
requiring the streamline ` to be in equilibrium, is solved by coupling the direct and
inverse problems. By rotating the flow pattern, the impinging jet J3 can always be
considered horizontal (θ3 = π).

To use the study of jet impact on a wall, we have to rotate the wall ` by an angle
θ1. For the inverse problem, it is quite different. Now, the jet comes from the right of
the barrier ` and not from the left as it did before (figure 12). In this configuration,
the different mapping planes are changed (the points B and D are inverted), so few
equations are modified. Equations (3.13) and (3.4) become

θ̃(σ) =
2

π
lim
ζ→eiσ

Re

{∫ π

0

ζ sin σ′

1− 2ζ cos σ′ + ζ2
τ̃(σ′)dσ′

}
+ γ + 1

2
π (4.1)

because, in this case Θ(0) = π, and

df = −V∞
π

(
hB

2 + ζ + 1/ζ
− hD

2− ζ − 1/ζ

)(
1− 1

ζ2

)
dζ (4.2)

respectively.

From now on, we will index the values or functions relating to the direct problem
by a superscript I, and those for the inverse problem with II.
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4.1. Numerical procedure

The general problem can be stated initially with any arbitrary obstacle. We choose an
infinite plane by considering the bisector of the two jet directions as a rigid barrier.
The bisector must not be chosen for identical impinging jets (h1 = h3), because this is
the solution to the problem. The origin of the arc lengths is first taken at the origin
O of the Cartesian coordinates. Let the function θIk(s), with k = 1, describe the initial
wall; k is the iteration of the whole system (direct + inverse), which we will call the
chief iteration.

The direct problem is first solved to calculate the speed distribution on this wall.
This is done by solving the recursive scheme of the direct problem (index n for its
iterations):

εIk,n = (1− r1)f1(τ̃
I
k,n−1, γ

I
k,n−1, λ

I
Ck,n−1) + r1ε

I
k,n−1,

θ̃Ik,n = (1− r2)f2(ε
I
k,n) + r2θ̃

I
k,n−1,

τ̃Ik,n = (1− r3)f3(θ̃
I
k,n, ε

I
k,n) + r3τ̃

I
k,n−1,

γIk,n = (1− r4)f4(θ̃
I
k,n, ε

I
k,n) + r4γ

I
k,n−1,

λICk,n = (1− r5)f5(τ̃
I
k,n, γ

I
k,n, ε

I
k,n) + r5λ

I
Ck,n−1.

At convergence, this gives us the function τIk(s) and the position γIk of the dividing
point, which will now be considered as the origin of arc lengths and of the Cartesian
coordinates. The relative location of the impinging jet can be defined by drawing the
stagnation streamline.

This velocity distribution τIk(s) is used to initialize the inverse problem. γIIk will thus
be equal to π−γIk . The solution of the recursive scheme for the inverse problem, given

τ̃IIk,n = (1− r1)f1(ε
II
k,n−1) + r1τ̃

II
k,n−1,

εIIk,n = (1− r2)f2(τ̃
II
k,n−1) + r2ε

II
k,n−1,

can be used to define θIIk (s), which characterizes the new geometry of the wall.
Now, for the next iteration k + 1, we consider the impact of jet J1, not on the

rotated wall but on the wall described by

θIk+1(s) = (1− r)θIk(s) + r
(
θIIk (s)− θ1

)
.

The weighting factor r is chosen to belong to [0.3,0.5].
The process is reiterated until convergence, and is stopped by a test on the relative

error associated with θIk . About twenty chief iterations are necessary. The algorithm
is presented in figure 13.

We should point out that we do not have to reach convergence with the direct
problem at each chief iteration k. This is of no use because the wall geometry will
always be wrong until convergence is reached, so the exact speed distribution is not
needed. Moreover, solving for it is very time-consuming, so we perform just three
iterations for the direct problem and 20 for the inverse one. All the results require
about ten minutes of calculation on a PC Pentium 120 MHz computer.

4.2. Computed results

We have previously proposed taking θ3 = π. We should note here that we can also
choose h1 = 1 and h3 6 1 by reversing jets J1 and J3. This will be done from here on.

To test our method, we will compare our data with the few analytical results from
the literature. They are: direct impact of jets of equal or different thickness, impact
with incidence of two equal jets, and impact of shifted jets.
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θ I
k, n(s)

τ I
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τ II
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3

h I
k (s) = θ II

k  (s)?

θ I
k +1 (s) = (1–r) θ I

k  (s)

+ r 9θ II
k (s)–θ1:20 iterations

20–30 chief iterations

Figure 13. Algorithm of the method
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Figure 14. Variations of the angles θ2 and θ4, and the thickness h4, versus h3 for different angles of
incidence θ1.

For general configurations (different jets at incidence), we could only verify the
theorem of change of momentum, which is not used in our solution. With the
notation defined in figure 1, this can be expressed

h1 cos θ1 − h3 = h2 cos θ2 + h4 cos θ4, (4.3)

h1 sin θ1 = h2 sin θ2 + h4 sin θ4. (4.4)

Figure 14 shows the variations of the angles θ2 and θ4, and the thickness
h4 = 1 + h3 − h2 versus h3 for different angles of incidence θ1 (0◦, 45◦, 90◦, and
135◦). This represents our computed results for all cases except shifted jets.
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Figure 15. Impinging free jets. (a) θ1 = 0◦, h1 = 1, and h3 = 0.5, (b) θ1 = 90◦, and h1 = h3 = 1.

4.2.1. Analytical results

(i) Direct impact of two equal jets, θ1 = 0◦ and h3 = 1
We have, directly

h1 = h2 = h3 = h4, θ2 = 3
2
π, θ4 = 1

2
π.

The plot of free streamlines we computed matches the analytical solution given by
Milne-Thomson (1968):

y(x) =
h1

2
+
h1

π
ln

{
coth

(
2πx

4h1

− 1

)}
.

(ii) Direct impact of jets of different thicknesses (figure 15a), θ1 = 0◦ The conser-
vation of mass and the theorem of change of momentum yield

h2 = h4 =
h1 + h3

2
, cos θ4 =

h1 − h3

h1 + h3

, θ2 = 2π − θ4.

The computing method yields the analytical relations between h2 and h4, and between
θ2 and θ4 exactly. So (4.4) is obviously verified, which is not the case for (4.3). There
is some difference between the computed value of θ4 and the analytical: about 0.05◦,
or less than 0.1% in relative error. So, equation (4.3) is not strictly verified, and the
relative error is defined

xrel(%) =

∣∣∣∣ (h1 cos θ1 − h3)− (h2 cos θ2 + h4 cos θ4)computed
(h1 cos θ1 − h3)

∣∣∣∣× 100.

For h3 = 0.8 and 0.5, we get a relative error of about 0.2%. But in these cases, the
half-unit circle of the ζ-plane is discretized the same way as for the impact of J1

and J3, with 721 evenly distributed points. For better results, an irregular subdivision
(981 points) can be used with many more quadrature points in the vicinity of 0 and
π. So for h3 = 0.5 the error is reduced to 0.02%. For h3 = 0.3 or 0.2, this irregular
subdivision is used. In the case of h3 = 0.2, the relatively unfavourable result for xrel
(xrel = 0.16%, 0.06% for h3 = 0.3) can be explained by the fact that, as the thickness
of the jet J3 is small, the arc lengths on ` calculated during the inverse problem will be
small. The infinite points B and D cannot be reached exactly. This is the phenomenon
of crowding.

(iii) Equal jets with incidence (figure 15b), h3 = 1 The special case of jets impinging
at incidence could be considered as an analytical one. Indeed, if two equal jets impinge
at incidence (θ1 = 2α), it is clear that the solution will be symmetrical with respect to
the bisector of the angles between the directions J1 and J3. Furthermore, applying the
principle of reversibility, the solution will be the same as in the previous case (direct
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y1 − ỹ3 θ2(deg.)
∆θ2

θ2

(%) θ4(deg.)
∆θ4

θ4

(%) xoutlet youtlet

0.7 280.541 0.02 100.652 0.07 0.003 −0.028
1.1 266.535 0.01 86.476 0.02 0.002 0.009
1.5 251.935 0.06 72.244 0.21 0.009 0.045

Table 1. h1 = h3 = 1

impact of different jets) if we reverse all the velocities. So we have

θ1 = 2α, θ2 = 3π/2 + α, θ4 = 1
2
π + α,

h2 = h1(1− cos α), h4 = h1(1 + cos α).

The computed results for h2, h4, θ2, and θ4 are identical to the analytical ones for the
different values of θ1, so the relative errors associated with the theorem of change of
momentum are almost zero (about 10−5%).

(iv) Shifted jets. The case of shifted jets is completely determined because the
distance between the axes of the two jets is requested. This configuration was studied
by Birkhoff & Zarantonello (1957), and especially by Gurevich (1966), who gave

y1 − ỹ3 = h1 − h2 cos θ2 −
1

π

(
h2 sin θ2 ln

∣∣∣∣tan
θ2

2

∣∣∣∣+ h4 sin θ4 ln

∣∣∣∣tan
θ4

2

∣∣∣∣) ,
where y1 − ỹ3 is the distance between the upper free surface of jet J1 at infinity and
the lower surface of jet J3. Later, Keller (1990) takes up this equation again. The
programme has to be modified so the distance between the axes of the jets can be set.

Table 1 gives θ2, θ4, and their relative error in association with the analytical
solutions, and the right-hand terms of the theorem of change of momentum xoutlet
(4.3) and youtlet (4.4). We present only results for h1 = h3, so the left-hand terms of
equations (4.3) and (4.4) are equal to zero.

Our computed results seem to agree very well with the analytical solutions. So we
will now treat jets of different thicknesses impinging at incidence, for which no data
are available in the literature.

4.2.2. Other results

To emphasize the performance of our method, we will consider different values for
the parameters θ1 (45◦, 90◦, and 135◦) and h3 (0.8, 0.5, 0.3, and 0.2). In each case, the
relation given by Keller for the distance of the asymptote from the stagnation point is
verified (less than 0.05% on the relative error associated with yL). As was previously
done with equation (4.3), the relative error for (4.4) can be defined by

xrel(%) =

∣∣∣∣h1 sin θ1 − (h2 sin θ2 + h4 sin θ4)computed
h1 sin θ1

∣∣∣∣× 100.

An evenly distributed discretization was used for h3 = 0.5 and 0.8, and an irregular
subdivision for the other values. Usually, the errors xrel and yrel are low (about 0.05%)
and can, if necessary, be reduced by fine discretization. We noticed some special cases
– θ1 = 45◦ and h3 = 0.8 or 0.5; h3 = 0.2 and θ1 = 45◦ or 90◦, – where xrel ' 0.5%. In
the first case, it would be reasonable to think that the results would be better with a
finer discretization on the half-unit circle. But these will probably not be as good as
the others, because the left-hand term in equation (4.3) is very small (6 0.1). And as
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Figure 16. Impinging free jets. (a) θ1 = 45◦, h1 = 1, and h3 = 0.8, (b) θ1 = 90◦, h1 = 1, and h3 = 0.5,
(c) θ1 = 90◦, h1 = 1, and h3 = 0.3, (d) θ1 = 135◦, h1 = 1, and h3 = 0.2, and (e) θ1 = 135◦, h1 = 1,
and h3 = 0.2 – enlargement.

the absolute error is nearly the same in each configuration (10−4), the relative error
will always be larger. In the case of h3 = 0.2, as pointed out previously, the points
B and D at infinity are not reached exactly, even with fine discretization, and that is
why the theorem of change of momentum is not verified exactly.

Figure 16 shows the computed jets for (a) θ1 = 45◦ and h3 = 0.8, (b) θ1 = 90◦ and
h3 = 0.5, (c) θ1 = 90◦ and h3 = 0.3, and (d) θ1 = 135◦ and h3 = 0.2. An enlargement
of the impinging area for the last case is plotted in figure 16(e). Like Dias et al. (1987)
for jets exiting from nozzles, or Elcrat & Trefethen (1986) for flows over polygonal
obstacles, the flow crosses itself, and hence is non-physical. This example is given to
show that nothing in this formulation prevents this from happening. To determine the
flow for this extreme configuration more realistically the mathematical model would
have to be revised.

5. Concluding remarks
On the basis of these tests, we think that our method provides a reliable way of

solving numerically the two-dimensional free-surface problem of two impinging free
jets. The only limitation is the usual crowding. This is mainly true for large h1/h3

ratios and large angles of incidence, where we need many points in the vicinity of B
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and D. We are quickly limited by the computed precision and, even then, the wall arc
lengths are not long enough.

This solution shows that no additional assumptions are needed in order for the
problem to be determined when it is considered as a boundary problem. This confirms
that the problem is completely determined by the widths h1 and h3 of the incoming
jets, and by the angle formed between them, contrary to all that has been published
in the literature. Prescribing the streamline ` in equilibrium appears to be much more
efficient than applying the theorem of change of momentum.

The inverse method we used, which is needed in order to deal with the problem
of impinging jets, cannot solve an arbitrary inverse problem exactly, i.e. design the
wall corresponding to a prescribed speed distribution. We are looking for a new
formulation to solve this problem without specifying the value of γ. We will then have
to check if any additional constraints beyond the speed distribution prescribed by ΩS
in the vicinity of the stagnation point need to be satisfied, as in airfoil design.

REFERENCES

Birkhoff, G. & Zarantonello, E. H. 1957 Jets, Wakes and Cavities. Acdemic Press.

Dias, F., Elcrat, A. R. & Trefethen, L. N. 1987 Ideal jet flow in two dimensions. J. Fluid Mech.
185, 275–288.

Dias, F. & Vanden-Broeck, J.-M. 1990 Flows emerging from a nozzle and falling under gravity. J.
Fluid Mech. 213, 465–477.

Elcrat, A. R. & Trefethen, L. N. 1986 Classical free-streamline flow over a polygonal obstacle. J.
Comput. Appl. Math. 14, 251–265.

Gurevich, M. I. 1966 Theory of Jets in an Ideal Fluid. Pergamon Press.

Hureau, J., Brunon, E. & Legallais, Ph. 1996 Ideal free streamline flow over a curved obstacle.
J. Comput. Appl. Math. 72, 193–214.

Hureau, J. & Legallais, Ph. 1996 Résolution du problème inverse pour un profil. AAAF J. 32,
3.3–3.10.

Hureau, J., Mudry, M. & Nieto, J.-L. 1987 Une méthode générale de numérisation d’écoulements
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